Cotton-derived bulk and fiber aerogels grafted with nitrogen-doped graphene.

نویسندگان

  • Chunhui Wang
  • Yibin Li
  • Xiaodong He
  • Yujie Ding
  • Qingyu Peng
  • Wenqi Zhao
  • Enzheng Shi
  • Shiting Wu
  • Anyuan Cao
چکیده

Three-dimensional graphene-based structures such as graphene aerogels or foams have shown applications in energy, environmental matters, and many other areas. Here, we present a method to convert raw cotton into functional aerogels containing a significant amount of nitrogen-doped graphene (N-graphene) sheets grafted on carbonized cellulose fibers. Urea was introduced into raw cotton as a molecular template as well as a nitrogen source to synthesize mushroom-like N-graphene sheets strongly attached to cotton skeletons. The excellent processability of raw cotton allows us to configure bulk or meter-long fiber shaped aerogels, with high porosity and flexibility. Synergistic effects stemming from the integration of N-graphene and carbonized cotton skeletons promise potential applications as conductive electrodes for supercapacitors, with a measured specific capacitance of 107.5 F g(-1) in a two-electrode system. Our results indicate a low-cost and scalable approach toward high-performance graphene-based aerogels and electrodes via biomass templating.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multifunctional nitrogen-doped graphene nanoribbon aerogels for superior lithium storage and cell culture.

Nitrogen-doped graphene nanoribbon aerogels (N-GNRAs) are fabricated through the self-assembly of graphene oxide nanoribbons (GONRs) combined with a thermal annealing process. Amino-groups are grafted to the surface of graphene nanoribbons (GNRs) by an epoxy ring-opening reaction. High nitrogen doping level (7.6 atm% as confirmed by elemental analysis) is achieved during thermal treatment resul...

متن کامل

Silica Aerogels Doped with MWCNT, Graphene, MoS2, and WS2

Silica aerogels are among the most easily produced types of aerogels due to the availability of required materials, the cheapness of required materials such as carbon dioxide, ethanol, and tetraethyl orthosilicate, and the relatively simple sol-gel chemistry. Using silica aerogels as skeletons, nanomaterials were easily and effectively structured in three dimensions. The aerogels were doped wit...

متن کامل

High nitrogen-containing cotton derived 3D porous carbon frameworks for high-performance supercapacitors

Supercapacitors fabricated by 3D porous carbon frameworks, such as graphene- and carbon nanotube (CNT)-based aerogels, have been highly attractive due to their various advantages. However, their high cost along with insufficient yield has inhibited their large-scale applications. Here we have demonstrated a facile and easily scalable approach for large-scale preparing novel 3D nitrogen-containi...

متن کامل

Synthesis and characterization of highly crystalline graphene aerogels.

Aerogels are used in a broad range of scientific and industrial applications due to their large surface areas, ultrafine pore sizes, and extremely low densities. Recently, a large number of reports have described graphene aerogels based on the reduction of graphene oxide (GO). Though these GO-based aerogels represent a considerable advance relative to traditional carbon aerogels, they remain si...

متن کامل

Investigation of N-doped Graphene as an Absorbent for some Gases: A DFT Study

At the present theoretical study, DFT calculations were performed for elucidating thereaction, absorption energy and the quantum molecular descriptors including electronic chemical potential, chemical hardness, Homo, Lumo, band gap energy (Eg) and finding the most active nitrogen-doped graphene sheet (N-G) for absorption H2S, CH4, N2 and CO2 gases. Finally it found that nitrogen-doped gra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 7 17  شماره 

صفحات  -

تاریخ انتشار 2015